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ABSTRACT: An evaluation framework for tropical cyclone rapid intensification (RI) forecasts is introduced and applied
to evaluate the performance of RI forecasts by the operational Hurricane Weather Research and Forecasting (HWRF)
Model. The framework is based on the performance of each 5-day forecast cycle, while the conventional RI evaluation is
based on the statistics of successful or false RI forecasts at individual lead times. The framework can be used to compare
RI forecasts of different cycles, which helps model developers and forecasters to characterize RI forecasts under different
scenarios. It also can provide the evaluation of statistical performance in the context of 5-day forecast cycles. The RI fore-
cast of each cycle is assessed using a modified probability-based approach that takes the absolute errors in intensity changes
into account. The overall performance of RI forecasts during a given period is assessed based on the fractions of the indi-
vidual forecast cycles during which RI events are successfully or falsely predicted. The framework is applied to evaluate
the performance of RI forecasts by the HWRF Model for the whole life cycle of a single hurricane, as well as for each of
the hurricane seasons from 2009 to 2021. The metric based on the probabilities of detection and false alarm rate of RI is
compared with that based on the absolute errors in the intensity and intensity change during RI events.

SIGNIFICANCE STATEMENT: An evaluation framework for tropical cyclone rapid intensification (RI) forecasts is
introduced, focusing on the performance of RI forecasts in each 5-day forecast cycle. The cycle-based approach can
help to characterize RI forecasts under different conditions such as certain synoptic scenarios, initial conditions, or vor-
tex structures. It also can be used to assess the overall performance of RI forecasts in terms of the percentages of indi-
vidual forecast cycles that successfully or falsely predict RI events.

KEYWORDS: Forecast verification/skill; Model errors; Model evaluation/performance; Error analysis; Intensification;
Tropical cyclones

1. Introduction

Accurately forecasting the rapid intensification (RI) events
of tropical cyclones (TCs) remains a challenge despite recent
improvements in the overall performance of TC forecasts
(Cangialosi et al. 2020; DeMaria et al. 2014, 2021; Gall et al.
2013). RI is a scenario where the intensity of a TC increases
dramatically [e.g., by 30 kt (1 kt ’ 0.51 m s21) or greater] in a
short period of time, such as 24 h (Kaplan and DeMaria 2003;
Kaplan et al. 2010) and improving RI forecasts is a high prior-
ity of the National Hurricane Center (NHC). The challenge in
forecasting RI events stems from a lack of understanding of
the physical mechanisms of RI and limitations in forecasting
approaches. The underlying cause of RI onset and develop-
ment is an active area of research, where prior studies have
shown RI is influenced by multiscale processes such as inner-
core convection (e.g., Callaghan 2017; Willoughby et al. 1982),
vortex alignment process in the presence of vertical wind shear
(e.g., Finocchio et al. 2016; Rios-Berrios et al. 2018), large-scale
conditions (e.g., Hendricks et al. 2010; Kaplan et al. 2010;
Knaff et al. 2003), and atmosphere–ocean interaction (e.g.,

Domingues et al. 2019; Kim et al. 2014, 2022). Given our limited
knowledge of the physical processes of RI, empirical statistics–
based models have been developed and used in both research
and operations (e.g., DeMaria et al. 2021; Kaplan et al. 2010,
2015; Knaff et al. 2018, 2020; Rozoff et al. 2015, and references
therein). A weakness of these statistical models is that the fun-
damental dynamic and physical processes are simplified based
on empirical equations, which could limit their applications.

Alternatively, numerical modeling with full dynamics and
physics suites can be used to predict RI events. With advances
in high-performance computing and improvements in physical
and dynamical parameterization schemes, numerical models
can better resolve the fine-scale structure of the TC inner core;
these advancements have improved the forecasting ability of
coupled atmosphere–ocean models such as Hurricane Weather
Research and Forecasting (HWRF) Model (Tallapragada 2016)
and the Hurricane Multiscale Ocean-coupled Nonhydrostatic
(HMON) model (Mehra et al. 2018; Wang et al. 2019). For ex-
ample, the intensity and track forecast errors by the HWRF
Model have been significantly reduced over the last decade
as documented in the annual reports and strategic plans of
the NOAA Hurricane Forecast Improvement Project (HFIP)
(https://hfip.org/), as well as in a recent study by Cangialosi et al.
(2020). Case studies on RI forecasts over the northwest PacificCorresponding author: WeiguoWang, Weiguo.Wang@noaa.gov

DOI: 10.1175/WAF-D-22-0007.1

Ó 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

WANG E T A L . 125JANUARY 2023

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 08:34 PM UTC

https://hfip.org/
mailto:Weiguo.Wang@noaa.gov
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


basin in 2013 have shown that the real-time operational HWRF
Model had high detection and low false alarm rates of RI, and
outperformed other numerical as well as statistical models
(Tallapragada and Kieu 2014; Tallapragada et al. 2015, 2016).
Cangialosi et al. (2020) showed the detection rate of RI by the
HWRF Model has notably increased in the years since 2007,
with further improvement since 2015. DeMaria et al. (2021)
concluded that operational RI forecasts at NHC have improved
by 20%–25% since the 2015–17 baseline period, based on a
reduction in absolute intensity errors during forecasted or
observed RI events. DeMaria et al. (2021) also found that
the HWRF and HMON models have improved model skill in
RI forecasts since 2015 and both models provided the leading
guidance for the Northern Atlantic (NATL) basin. Neverthe-
less, the utility of numerical models is still limited for RI fore-
casts (i.e., having low detection rates and high false alarm rates)
and more effort is needed to evaluate and analyze model fore-
casts to identify the defects of numerical models in RI forecast-
ing and to make further improvements.

The existing RI evaluation frameworks focus on the model
performance at separate lead times rather than over the en-
tirety of each forecast cycle (typically 5-day forecasts for me-
soscale models). Therefore, current RI evaluations may not
be best suited for identifying forecast problems, as they do not
reflect whether individual forecast cycles successfully or falsely
predict RI events. Numerical model developers and hurricane
forecasters have shown interest in the model’s ability to cap-
ture part or all of RI events during an entire forecast cycle.
This is especially true when multiple separate RI events occur
during a single forecast cycle (e.g., as in Fig. 1), where an RI
analysis could be more useful over the entire cycle than for
separate lead times. By analyzing an entire TC forecast cycle,
the cycle-based analysis can uniquely identify and categorize
forecast challenges related to recurring synoptic scenarios, ini-
tial conditions, or TC characteristics. For forecasters, a cycle-
based RI analysis can help to diagnose and recognize scenarios
where a model is likely to perform particularly well or poorly.
In addition, the cycle-based analysis can provide seasonal
statistics of RI performance in the context of 5-day forecast
cycles, which provides a different perspective from the tra-
ditional evaluations focusing on RI performance at individ-
ual lead times. Given the advantages of the cycle-based
analysis, we propose a new evaluation framework to analyze
and compare the performance of RI forecasts in the context
of individual forecast cycles.

Two common approaches are used in existing RI evaluation
frameworks. One approach calculates the overall probability
of detection (POD) and false alarm rate (FAR) indices for
forecasted RI events at individual forecast lead times (e.g., 24,
48 h) during one or more hurricane seasons (e.g., DeMaria
et al. 2014, 2021; Kaplan and DeMaria 2003; Kaplan et al.
2010). The POD index is the rate of the model’s successful
forecasts of individual RI events that were observed by mea-
surement, which is defined as

POD 5
number of forecasted RI events that were observed

total number of observed RI events
,

(1)

while the FAR index is the rate of the model’s false forecasts
of RI events that were not observed at all, which is defined as

FAR 5
number of forecasted RI events that were not observed

total number of forecasted RI events
:

(2)

The other approach calculates the mean absolute error
(MAE) of the forecasted intensity at individual lead times
during the periods of observed or forecasted RI events
(DeMaria et al. 2021). The POD and FAR category evalua-
tion with a cutoff value can explicitly give information on
RI events being correctly or falsely detected. However, it
can be misleading when the observed and forecasted inten-
sity increases are very close or very different. For example,
this method can classify a good forecast of an intensity in-
crease as a failure when it is only slightly smaller than that
of the observed RI event. Likewise, a bad forecast of an in-
tensity increase can be classified as a success when it is much
larger than that of the observed RI event. This is because
the binary classification does not consider the quantitative
errors in the forecasted intensity or intensity change (IC).
Conversely, the MAE-based approach does quantitatively
calculate the absolute errors (AE), but it does not include
useful information on how many RI events were correctly
or falsely predicted and how they contribute to the total er-
rors. This is because the MAE-based approach combines
the total RI events that were either forecasted or observed
without distinguishing between correct and false RI fore-
casts. Both approaches can be used to evaluate RI forecasts
over individual forecast cycles.

In this study, the POD/FAR-based approach is adapted to
evaluate RI forecasts of each 5-day cycle, with a modification
to consider the AEs of 24-h ICs (AEIC) in the calculations of
POD and FAR indices to address the weakness mentioned
above. The statistical performance in RI forecasts by a model
is based on the percentages of individual 5-day forecast cycles
during which RI events are successfully or falsely predicted.
To illustrate the cycle-based framework, we calculate and an-
alyze the successful and false prediction rates of RI cycles by
the HWRF Model. The configuration of the HWRF Model
can be found in recent publications (e.g., Biswas et al. 2017).
Section 2 describes the details of the proposed framework
and definitions for assessing the RI forecasts of individual
cycles. Section 3 presents and discusses the results of RI per-
formance for the forecast cycles of a single storm, a season,
and multiple seasons using the proposed framework and
metrics. A summary of the proposed framework is given in
section 4.

2. Data and methods

a. Data

The NHC’s post-storm best track analysis data obtained
from the Automated Tropical Cyclone Forecasting (ATCF)
System (Sampson and Schrader 2000) (https://ftp.nhc.noaa.
gov/atcf/archive/) are used to determine the “observed” RI
events and to compare with model forecasts. Some of the
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5-day forecast cycles for the TCs in the NATL and eastern
North Pacific (EPAC) basins generated by the operational
HWRF Model from 2009 to 2021 are chosen based on the
following criteria: a forecast cycle is included only if both
the HWRF forecast and best track analysis have at least
48 h of intensity data over the ocean spanning the same
5-day period. It is noticed that weak systems can develop
and rapidly intensify within 5 days. Therefore, the forecast
cycles with initial disturbances (i.e., “invest” systems) are
also included to increase the sample size, if the model can
generate intensity forecasts longer than 48 h. In addition,

when RI is assessed over a 5-day forecast period, it is re-
quired that both the HWRF forecast and best track analy-
sis have available data to calculate intensity changes at a
given verifying time.

b. Methodology

In practice, RI is defined as an increase in the maximum
sustained surface wind of a TC equal to or greater than a
threshold (RIc) in a given period, such as 24 h (Kaplan and
DeMaria 2003). Different RI thresholds have an impact on
the RI evaluation.

FIG. 1. (a) Time series of the maximum 10-m wind speed (intensity) during the 5 days from an
HWRF forecast (red) for Hurricane Lorenzo (2019) initialized at 1800 UTC 24 Sep 2019, and
the best track analysis data (black). (b) Time series of 24-h intensity changes (before the lead
time), with RI events identified at 10 lead times in the best track analysis (black filled circles),
and at four lead times by the HWRF forecast (red). One blue plus symbol denotes the hour
when the RI event is forecast, but is not found in the best track analysis (i.e., a false alarm event).
(c) AEIC. Note that no evaluations before 24 h are made because RI is relative to the intensity
in the past 24 h.
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Following the HFIP-adopted new performance measure for
RI (DeMaria et al. 2021), the term “RI event” hereafter re-
fers to a time when an intensity increase in the past 24 h is
equal to or greater than RIc. To evaluate the RI events pro-
duced in a 5-day forecast, a two-step procedure is applied to
the time series of intensity (i.e., the maximum 10-m wind
speed) derived from the model’s 5-day forecast. First, the
24-h IC at a given lead (verifying) time (T) is calculated as
the difference in the maximum 10-m wind speeds at T and
T 2 24 h. Second, for a given RI threshold, RI events are
identified as binary results (yes or no) at all verifying times.
The same two-step procedure is applied to NHC’s best
track analysis data for the same 5-day period of model inte-
gration. Then, the RI events derived from the model out-
put are compared with those from the best track analysis
data to determine how many of the observed RI events de-
rived from the best track analysis have been captured or
missed by the forecast and how many of the forecast RI
events are false alarms during the 5-day integration period.
In the evaluation, the AEIC is taken into consideration
(see below).

To illustrate the analysis procedure, Figs. 1a and 1b present
an example of a 6-hourly time series of the intensity and 24-h
IC of Hurricane Lorenzo (2019) forecasted by the operational
HWRF Model, initialized at 1800 UTC 24 September 2019.
RI events [with the threshold of 20 kt (24 h)21] are identified
every 6 h, denoted by red filled circles for the HWRF Model
and black filled circles for the best track analysis (Fig. 1b).
The best track analysis suggests that the hurricane went
through RI at 10 model forecast lead times (i.e., 24, 30, 36, 42,
48, 54, 60, 102, 108, and 114 h). The HWRF Model predicts
RI events at only four lead times (48, 54, 60, and 66 h). There-
fore, three RI events in the best track analysis are predicted
(at 48, 54, and 60 h) by the HWRF Model, while the HWRF
Model produces one false RI prediction at 66 h and does not
capture seven RI events shown in the best track analysis. For
this forecast cycle, the total numbers of the RI events ob-
served in the best track analysis data (denoted by N5best) and
forecasted by the HWRFModel (N5mod) are 10 and 4, respec-
tively. The POD index in the 5-day period (POD5) is 3/10,
i.e., three forecasted RI events that are in the best track analy-
sis, divided by the total number of the RI events in the best
track analysis (N5best 5 10), where the symbol “5” in the
abbreviations signifies the calculation over a 5-day period
to distinguish it from the conventionally used POD index.1

Likewise, the FAR index in the 5-day period (FAR5) is
1/4, as one forecasted RI event that is not indicated in the
best track analysis is divided by the total number of the
forecasted RI events (N5mod 5 4). POD5 and FAR5 are cal-
culated using the same formula as Eqs. (1) and (2), except
that the RI events from the model and analysis are counted

during a 5-day cycle, respectively. Note that the AEIC is not
yet considered in the above calculation.

Figure 1c shows the time series of the AEIC, indicating that
the AEIC is smaller than 15 kt for all three RI events the
HWRFModel correctly predicted, and larger than about 14 kt
for the seven RI events (at 24, 30, 36, 42, 102, 108, and 114 h)
the HWRF Model missed and the RI event (at 66 h) the
HWRF Model falsely predicted. As previously mentioned, a
weakness in the binary classification based on a cutoff value is
that it does not take forecast errors into account. To partially
address this issue, RI detection and false alarm rates can be
reevaluated with the AEIC being considered. For example, if
we set a criterion that a RI event is successfully detected when
both IC $ RIc and AEIC # 15 kt are satisfied, there is only
one RI event (at 54 h) predicted successfully by the HWRF
Model. In this case, the POD5 index would be reduced from
0.3 to 0.1. The inclusion of AEIC into the POD5 calculation
prevents the misclassification of a successful detection when
the HWRF Model captures an observed RI event but has a
very large error in intensity change. Similarly, the number of
the missed or falsely predicted RI events could be adjusted if
AEIC is very small (e.g., under 10% of the RIc value); this can
address the scenario where a forecasted 24-h IC is very close
to the best track analysis but is still classified as a failure or
false alarm (if the AEIC is not considered). In the example
shown in Fig. 1, the number of missed or falsely predicted RI
events could not be reduced because the AEIC is too large
(about 70% of the RIc value).

In summary, the AEIC-integrated evaluation of the fore-
casted IC at a lead time compared with the best track analysis
is as follows:

• The observed RI event (ICbest $ RIc) is detected by
the forecast if ICmod is equal to or greater than RIc, and
|ICmod 2 ICbest| # «1, where ICbest and ICmod are the 24-h
ICs derived from the best track data and model forecast,
respectively; «1 is the minimum error for a successful RI
detection. Thus, the forecasted RI event is excluded from
the POD5 calculation if AEIC is greater than «1.

• The observed RI event (ICbest $ RIc) is missed by the fore-
cast if ICmod is smaller than RIc and |ICmod 2 ICbest| . «2,
where «2 is the minimum IC error for a missed RI forecast.
Thus, the forecast is thought to successfully detect the ob-
served RI event and it is included in the POD5 calculation
if ICmod is very close to ICbest, i.e., AEIC # «2, even though
ICmod is smaller than RIc.

• The forecast is an RI false alarm if ICmod is equal to or
greater than RIc, but ICbest is smaller than RIc and |ICmod 2

ICbest| . «3, where «3 is the minimum IC error for a false
RI forecast. Thus, the forecast is not classified as a false
alarm and it is excluded from the FAR5 calculation if ICmod

is very close to ICbest, even though ICmod $ RIc.

There is no impact from AEIC on the calculations of
POD5 and FAR5, if «1 " ‘, «2 5 0, and «3 5 0. In the fol-
lowing calculations, «1 is taken to be the value of RIc and
«2 5 «3 5 0.1RIc, unless otherwise specified. «1 cannot be too
small because current model forecasts are not yet sufficiently

1 The POD and FAR for RI evaluations are usually calculated
for the duration of a hurricane season by aggregating the forecasts
at each lead time from all storms. To avoid confusion, it should be
emphasized that N5best, N5mod, POD5, and FAR5 in this study are
counted or calculated during each single 5-day period or cycle.
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accurate. Otherwise, the RI detection rate can be extremely
low (see an example in section 3a).

1) PERFORMANCE OF A SINGLE FORECAST CYCLE

The HWRF Model’s performance during a single 5-day
forecast cycle is evaluated based on the values of POD5,
FAR5, as well as N5mod and N5best in the model integration
period, as summarized in Table 1. Three scenarios of the
model performance are considered as follows:

First, the 5-day forecast is considered an absolute failure in
predicting any RI events (regardless of timing) if it does not
produce a single RI event in the 5-day period, while the best
track analysis indicates that there is at least one RI event in
the same period, i.e., N5best . 0 but N5mod 5 0, or POD5 5 0.
In this case, the model forecast does not predict any real RI
events under any conditions.

Second, the 5-day forecast generates an absolute RI false
alarm if at least one RI event during the 5 days is predicted
but the best track analysis shows that there is not an RI event
in that period, i.e., N5best 5 0, but N5mod . 0, or FAR5 5 1.
In this case, all the predicted RI events which are not shown
in the best track analysis data are false alarms.

Third, the RI forecast performance depends on the thresh-
olds set by users if both the forecast and the best track analy-
sis show that there is at least one RI event, in the same 5-day
period, i.e., N5best . 0 and N5mod . 0. Users can set the
thresholds of POD5 and FAR5 (P0 and F0, respectively) to as-
sess whether the model successfully predicts the observed RI
events in the 5-day forecast cycle (Table 1). In this scenario,
the RI forecast could be a conditional success (CS) if POD5 is
equal to or greater than P0 (e.g., 0.5) and FAR5 is equal to or
smaller than F0 (e.g., 0.5), a conditional false alarm (CFA) if
FAR5 exceeds F0, and a conditional failure (CF) if POD5 is
smaller than P0. The best scenario is when FAR5 5 0 and
POD5 5 1, while the worst scenario is when FAR5 5 1 and
POD55 0.

2) PERFORMANCE OF MULTIPLE FORECAST CYCLES

To statistically evaluate the performance of RI forecasts, all
5-day forecasts by the HWRF Model in a sample set (e.g., a
hurricane season) are grouped according to whether RI events

can be identified, respectively, in the forecasts and in the best
track data for the same 5-day periods. For illustration, the
number of 5-day periods (cycles) in each group is shown in a
contingency table (Table 2), where n1, n2, n3, and n4 are the
numbers of 5-day periods when N5best . 0 and N5mod . 0,
N5best 5 0 and N5mod . 0, N5best . 0 and N5mod 5 0, and
N5best 5 0 and N5mod 5 0, respectively. The POD5 and FAR5
indices are then calculated for each of the n1 5-day forecast
cycles in the group of N5best . 0 and N5mod . 0, and the per-
formance of each forecast cycle is assessed based on the condi-
tions shown in Table 1.

The successful prediction rate (SPR) of the RI-observed
cycles2 is defined as the fraction of the number of RI-observed
cycles where all or part of RI events are successfully fore-
casted by the HWRFModel:

SPR 5
nCS

n1 1 n3
, (3)

where nCS is the number of the conditionally successful fore-
cast cycles (i.e., POD5 $ P0 and FAR5 # F0) among the
n1 cycles, and n1 1 n3 is the total number of the RI-observed
cycles.

The false prediction rate (FPR) of the RI-forecasted cycles
is defined as the fraction of the number of the RI-forecasted
cycles where all or part of the forecasted RI events are not ob-
served in the best track data (i.e., FAR5. F0):

FPR 5
nCFA 1 n2
n1 1 n2

, (4)

where nCFA is the number of the conditional false alarm cycles
where FAR5 exceeds F0 among the n1 cycles (N5obs . 0 and
N5mod . 0), n2 is the number of the absolute false alarm
cycles, and n1 1 n2 is the total number of the RI-forecasted
cycles.

It should be noted that the above cycle-based model per-
formance metrics can vary with differing threshold values
of RIc, AEIC, FAR5, and POD5 as well as differing time
matching window sizes over which both the forecasted and
observed RI events are checked. Other factors such as the
errors in observations and forecasts may affect the evalua-
tion, too.

3. Applications of the cycle-based evaluation
and discussion

The performance of a single 5-day forecast cycle by the
HWRF Model is quantified by POD5 and FAR5 indices as
discussed in the previous section (Fig. 1). Next, we show the
applications of the cycle-based metrics during the life cycle of
a single storm, a hurricane season, and multiple hurricane
seasons.

TABLE 1. Thresholds for assessing a 5-day forecast cycle by
the HWRF Model to predict the observed RI events. Note: P0

and F0 are the minimum POD5 and maximum FAR5 values,
respectively, if the RI forecast during a 5-day forecast cycle is
considered successful.

Performance Thresholds

Absolute failure N5best . 0 and N5mod 5 0,
POD5 5 0

Absolute false alarm N5best 5 0 and N5mod . 0,
FAR5 5 1

Conditional success (CS) N5best . 0 and N5mod . 0, and
POD5 $ P0 and FAR5 # F0

Conditional false alarm (CFA) FAR5 . F0

Conditional failure (CF) POD5 , P0

2 For simplicity, if there are any RI events forecasted during a
5-day forecast cycle, it is called a RI-forecasted cycle hereafter. If
RI events are identified in the best track analysis data during the
same period of the forecast cycle, it is called a RI-observed cycle.
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a. Performance of RI forecasts for a single storm

The operational HWRF Model was run for Hurricane
Laura (13L), initialized every 6 h from 0000 UTC 20 August
2020 to 1800 UTC 27 August 2020, providing 32 5-day fore-
casts (cycles) in total. Of these, 27 cycles are chosen for evalu-
ation based on the data sampling requirement described in
section 2a. Table 3 summarizes the number of 5-day forecast
cycles during which RI events [RIc 5 30 kt (24 h)21] are iden-
tified in the best track analysis data and in the forecasts. The
real RI events are identified based on the best track data for
22 5-day cycles (i.e., n1 1 n3 5 22), where the HWRF Model
predicts at least one RI event in 21 forecast cycles (n1 5 21).
The HWRF Model does not produce any RI events in one
forecast cycle (i.e., n3 5 1) initialized at 0600 UTC 26 August
2020, where RI events are observed in the best track data,
while it falsely predicts all RI events in four cycles (i.e., n2 5 4)
where the best track analysis does not indicate a single RI
event. Figures 2a and 2b show the POD5 and FAR5 indices for
the 22 forecast cycles where real RI events occurred. The
HWRF Model can produce RI events during the early forecast
cycles initialized between 0000 UTC 21 August and 1200 UTC
22 August 2020, but all the forecasted RI events do not match
the RI occurrence times in the best track data (i.e., POD5 5 0
and FAR5 5 1). In contrast, the HWRF Model captures most
real RI events at the correct times during the late cycles initial-
ized between 1800 UTC August 22 and 0000 UTC 26 August
2020, with a high POD5 index (60%–80%) and low FAR5 in-
dex (zero except for one cycle). The cycle-to-cycle comparison
in Fig. 2 gives us useful information for making hypotheses on
possible underlying causes for poor RI forecasts. For this
storm, the HWRFModel can predict RI events for most cycles,
but the performance of the late cycle RI forecasts is much bet-
ter than that of the early cycles. This suggests that the model
has difficulty in correctly predicting the times of RI occurrence
in early cycles of this storm, which might be related to the fore-
casts of tracks, environment, vortex structure, initial condition,
etc. For example, the forecasted tracks from the cycles initial-
ized between 1800 UTC 19 August and 1200 UTC 22 August
are shifted to the north of the observed track so that the simu-
lated vortex is not able to interact much with the island of

Cuba and experiences favorable conditions for intensifying
over water, which could lead to the false RI prediction or an in-
correct timing of RI (not shown).

Figure 2c shows the model AEIC values for the RI events
predicted by the HWRF Model at correct and incorrect times
during each cycle. The AEIC ranges from 10 to 70 kt during
the falsely predicted RI events, with a mean value of about
30 kt. The AEIC is substantially reduced during the cor-
rectly detected RI events, ranging from 5 to 35 kt, with a
mean value of about 12 kt. When the AEIC is considered as
described in section 2, the POD5 index is not affected if
«1 5 30 kt (i.e., AEIC must be under 30 kt for good RI
detection) except for one cycle initialized at 1800 UTC
23 August 2020 (see triangles in Fig. 2a). This occurs because
AEIC for most of the detected RI events is smaller than 30 kt.
If «1 is reduced from 30 to 10 kt, the POD5 index is signifi-
cantly reduced from about 60% to 20% (red dots in Fig. 2a)
for most cycles as the AEIC in most of the detected RI events
is between 10 and 30 kt, as shown in Fig. 2c. For the cycle ini-
tialized at 18 UT 24 August 2020 the forecasted IC at the time
of an observed RI event (ICbest $ RIc) is smaller than RIc but
it is very close to ICbest (AEIC , 3 kt). Therefore, this ob-
served RI event is thought to be detected with «2 5 3 kt rather
than missed by the forecast. As a result, the POD5 value for
this cycle is adjusted from 0.8 to 1 (see crosses). In this exam-
ple, the FAR5 index is not affected with «3 5 3 kt because all
the AEIC values during the falsely predicted RI events are
greater than 10 kt (Fig. 2c).

Implementing the thresholds as defined in section 2, the
HWRF Model successfully predicts RI events in 13 cycles
(NCS 5 13) if we use F0 5 0.5 and P0 5 0.5 to define success
(i.e., POD5 $ 0.5 and FAR5 # 0.5). In seven cycles the
HWRF Model predicts RI events but the FAR5 index is high,
exceeding 0.5 (FAR5 . 0.5). As a result, they are classified as
conditional false alarm cycles (nCFA 5 7). The total number
of cycles falsely predicting RI events is nCFA 1 n2 5 11.
Therefore, the SPR is 59% [13 out of 22, see Eq. (3)], while
the FPR is 44% [11 out of 25, see Eq. (4)]. SPR is greater
than FPR, suggesting that the model generally has a fairly
good ability to forecast RI events for this storm.

For comparison, the HFIP standard MAE-based approach
is applied to each cycle of Hurricane Laura (13L). It is found
that the MAE of the forecasted intensity in early cycles is
larger than in late cycles (like Fig. 2c), but the MAE cannot
differentiate the sources of the mean error (e.g., how much
the errors are from missed, detected, or falsely predicted RI
events). Therefore, the MAE approach provides little infor-
mation to help diagnose the underlying causes of poorly fore-
casted RI events. By aggregating individual lead times, the

TABLE 2. Contingency table of the number of 5-day periods (or cycles) in a sample set based on the number of RI events identified
in the forecasts and best track analysis data.

RI events observed (N5obs . 0) Not observed (N5obs 5 0) Total

RI events forecasted (N5mod . 0) n1 n2 n1 1 n2
Not forecasted (N5mod 5 0) n3 n4 n3 1 n4
Total n1 1 n3 n2 1 n4 n1 1 n2 1 n3 1 n4

TABLE 3. Contingency table of the number of 5-day forecast cycles
for Hurricane Laura (13L) in 2000.

N5obs . 0 N5obs 5 0 Total

N5mod . 0 n1 (521) n2 (54) 25
N5mod 5 0 n3 (51) n4 (51) 2
Total 22 5 27
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traditional POD/FAR analysis provides useful information
such as the statistical performance at different lead times, but
it cannot decipher which cycles have issues unlike the cycle-
by-cycle analysis. In addition, the cycle-based POD/FAR anal-
ysis can compare RI forecasts initialized at the same time by
different configurations of a model or different TC models,
which can be used to identify potential RI forecasting issues.

b. Performance of RI forecasts during the NATL
hurricane season in 2019

Like the traditional POD/FAR-based and HFIP standard
MAE-based evaluation approaches, cycle-based analysis can
also evaluate the statistical performance of RI forecasts over
one or more hurricane seasons in terms of percentages of suc-
cessful and false RI prediction cycles. The analysis of the RI
forecasts during the NATL hurricane season in 2019 is shown
here as an example.

The real-time operational HWRFModel generated 357 5-day
forecast cycles for the NATL hurricanes in 2019, from which
258 cycles are chosen following the sampling requirement. As
summarized in Table 4, RI events [RIc 5 30 kt (24 h)21] are
identified from the best track data in 62 5-day periods, while
RI events are forecasted by the model in 69 5-day periods.
There are 35 forecast cycles where RI events can be identified
both from the forecasts and from the best track analysis data.

FIG. 2. (a) POD5 index for the 22 forecast cycles during which RI events are identified in the
best track data for Hurricane Laura (13L) in 2020. Green bars, red filled circles, and triangles
stand for the calculations without considering AEIC, with AEIC, 10 kt, and with AEIC, 30 kt
for the detected RI events, respectively. Cross symbols (X) for the calculation with «2 5 3 kt to
determine if ICmod and ICbest are close. (b) FAR5 index. (c) Mean AEIC values during the RI
events predicted at the correct (green bars) and incorrect (yellow bars) times. The error bars de-
note minimum and maximum values. RIc is 30 kt (24 h)

21.

TABLE 4. Contingency table of the number of 5-day forecast cycles
over the NATL basin in 2019.

N5best . 0 N5best 5 0 Total

N5mod . 0 n1 (35) n2 (34) 69
N5mod 5 0 n3 (27) n4 (162) 189
Total 62 196 258
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The model does not produce any RI events in 27 forecast
cycles where the best track data indicate that RI events occur.
Therefore, the absolute failure rate is 0.44 (27 out of the total
62 RI-observed cycles). The model predicts RI events in
34 cycles where the best track data do not show any RI.
The absolute false alarm rate is 0.49 (34 out of total 69 RI-
forecasted cycles).

For the category of N5best . 0 and N5mod . 0 (35 cycles),
model performance in each forecast cycle is dependent on
how many RI events are predicted and how well the RI oc-
currence times of the predictions match the observations
during the 5-day model integration period (i.e., quantified
by the POD5 and FAR5 indices). Table 5 presents a joint
distribution of the number of 5-day forecast cycles with dif-
ferent thresholds of POD5 and FAR5 indices, where the oc-
currence times of the RI events derived from the forecast
and best track analysis exactly match. The number of cycles
with successful predictions increases as the POD5 threshold
(P0) decreases or FAR5 threshold (F0) increases. The HWRF
Model can successfully predict at least 50% of the observed RI
events with FAR5 less than 50% in nine cycles. There are no
forecast cycles where the HWRF Model can predict all the ob-
served RI events without a false alarm prediction. The number
of cycles with successful predictions increases when the fore-
casted RI occurrence time is within 66 h from the best track
analysis, as shown in parentheses in Table 5. This suggests that
in some cases the HWRF Model does predict RI events, but
they happen too early or too late.

For the 2019 NATL hurricane season, SPR of the RI-
observed cycles is 0.21 and FPR of the RI-forecasted cycles
is 0.67, where P0 and F0 are set to 0.5. Using a 66-h time
matching window, SPR increases to 0.23 and FPR is reduced
to 0.58. If the RI threshold is relaxed to 20 kt (24 h)21, SPR
and FPR are 0.25 and 0.64, respectively, which performs better
than using RIc 5 30 kt (24 h)21. Using a 66-h time matching
window, SPR is increased to 0.38 and FPR is reduced to 0.52.

c. Performance in different hurricane seasons

The above analysis is applied to each hurricane season
from 2009 to 2021 over the NATL and EPAC basins, respec-
tively, to assess the performance of the HWRF Model for RI
forecasts over time. The HWRF Model was upgraded yearly
over the last decade, focusing on improvements in spatial res-
olution, physics parameterization schemes, data assimilation
system, initialization techniques, and ocean coupling.

Figure 3 presents how the SPR and FPR indices vary over
the years in the NATL basin. With RIc 5 30 kt (24 h)21 and a

zero-time window (i.e., exact time matching), the SPR index
is generally between 0 and 0.4. There is a clear trend of SPR
increasing over time, particularly after 2016, though it is still
lower than 0.5. The SPR index increases as the time matching
window is relaxed to 66 (Fig. 3a, blue line) and 612 h (Fig. 3b,
orange line) of the verifying time, suggesting that in some fore-
cast cycles the HWRF Model can correctly predict large inten-
sity increases but not the exact times when RI events begin.
The SPR index also increases when a lower RI threshold of
20 kt (24 h)21 is used (Fig. 3a, red line). This implies that
the HWRF Model still has difficulty in accurately predicting
large increases in intensity like other TC models (Tallapragada
and Kieu 2014). This is likely due to insufficient resolution and
inadequate physics parameterizations at subgrid scales despite
the adjusted parameterization schemes and increased horizon-
tal resolution (from 9 to 3 km in 2010, then to 2 km in 2015,
and 1.5 km in 2018). Figure 3b shows that the FPR index of
forecasted RI cycles has generally decreased over time. The
FPR index can be reduced by using a relaxed time matching
window or reduced RI threshold. For comparison, the con-
ventionally used POD and FAR indices are also calculated
for each hurricane season based on Eqs. (1) and (2) for all
lead times (Fig. 3b, broken lines). The POD and FAR indi-
ces have the same time-varying trend as the forecast cycle–
based SPR and FPR indices with a zero-time matching win-
dow and P0 5 F0 5 0.5 (Fig. 3, solid black lines), despite an
approximate 10%–20% difference in magnitude. Note that
in addition to the different ways of aggregating data, the
SPR and FPR indices can vary with P0 and F0 thresholds
(Wang et al. 2020), while the traditional POD and FAR in-
dices cannot.

Figure 4 shows SPR and FPR indices in the EPAC basin
spanning the analysis period 2009–21. The RI forecast perfor-
mance in the EPAC basin by the HWRF Model is compara-
ble to or better than in the NATL basin before 2014, but it is
worse afterward. Unlike in the NATL basin, the improving
trend in SPR and FPR over time is very weak, except for the
case of RIc 5 20 kt (24 h)21. Both SPR and FPR indices in-
crease when using a relaxed time window or lower RIc value,
which matches the NATL basin results.

To understand the overall ability of the HWRF Model to
predict TC intensification, we analyze the 95th percentile of
24-h intensity increases (W95) for the HWRFModel forecasts
and the best track data for each year from 2009 to 2021 (not
shown). The mean W95 value (23.4 kt) of the HWRF fore-
casts is very close to that (22.7 kt) of the best track analysis
data in the NATL basin, indicating that the HWRF Model

TABLE 5. Number of 5-day forecast cycles in the 2019 NATL basin with POD5 $ P0 and FAR5 # F0 in the category of N5best . 0
and N5mod . 0. The results shown in parentheses are for the cases of 66-h time matching windows (relative to the verification time).

POD5 $ 0 POD5 $ 0.25 POD5 $ 0.50 POD5 $ 0.75 POD5 5 1.00

FAR5 5 0.00 17 (26) 11 (17) 4 (10) 0 (4) 0 (2)
FAR5 # 0.25 18 (27) 12 (18) 5 (11) 0 (5) 0 (3)
FAR5 # 0.50 23 (29) 16 (19) 9 (12) 1 (6) 1 (4)
FAR5 # 0.75 24 (30) 17 (20) 10 (13) 2 (7) 2 (5)
FAR5 # 1.00 35 (36) 21 (21) 13 (14) 2 (7) 2 (5)
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can predict large intensity increases. However, the SPR index
remains low (0.1–0.4) and the FPR index is high (0.6–1.0)
(Fig. 3), suggesting that the HWRF Model has difficulty in
predicting the correct RI occurrence times as both SPR and
FAR indices improve with a relaxed time matching window.
For the EPAC basin, the mean W95 value (21.3 kt) of the
HWRF forecasts is smaller than that (26.5 kt) of the best track
data. The HWRF Model predicts large intensity increases

much less frequently than does the best track analysis; this
could partially explain why SPR increases and FPR decreases
significantly with a lower RI threshold value (Fig. 4).

Although the HWRF Model’s ability to accurately predict
RI events in terms of timing and magnitude still needs im-
provement, the HWRF Model has performed better over
time. It is difficult to attribute specific improvements to spe-
cific model enhancements, but the following upgrades could

FIG. 3. (a) The SPR index of RI-observed cycles by the HWRF Model over the NATL basin
for the years from 2009 to 2021 for Ric 5 30 kt (24 h)21 and exact time matching (i.e., the same
occurrence times) of forecasted and observed RI events (solid black line), RIc 5 30 kt (24 h)21

and 66-h time matching window (blue), RIc 5 30 kt (24 h)21 and 612-h time matching window
(orange), as well as RIc 5 20 kt (24 h)21 and exact time matching (red). The broken black line
shows the conventional POD index with RIc 5 30 kt (24 h)21 calculated by aggregating the fore-
casts at all lead times. (b) The FPR index of forecasted RI cycles. The calculation is not available
in 2013 because no RI events can be identified that year from the best track data with the thresh-
old of 30 kt (24 h)21.
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have played an important role. First, the HWRF system in-
creased the spatial resolution three times in the past 12 years,
as previously mentioned. Increasing the horizontal resolution
benefits the intensity forecast and improves the potential to
forecast TC intensification (Gopalakrishnan et al. 2012; Zhang
et al. 2011). Second, the physical parameterization schemes
have been adjusted and upgraded. For example, the eddy diffu-
sivity in the NCEP global forecast system (GFS) PBL scheme
has been adjusted based on observations, which significantly im-
proved the intensity forecasts (Bu et al. 2017; Gopalakrishnan
et al. 2013; Wang et al. 2018). Third, the ocean component of
the HWRF system contributed to improvements in intensity
and track forecasts (Kim et al. 2022). The ocean model up-
grades included replacing the one-dimensional column model,
Princeton Ocean Model (POM), with a three-dimensional

model, the Hybrid Coordinate Ocean Model (HYCOM).
Also, more realistic initial conditions are incorporated from
the global operational Real-Time Ocean Forecast System
(RTOFS) at NCEP (https://polar.ncep.noaa.gov/ofs/index.
shtml). The improved coupling of oceanic and atmospheric
models likely helped to reduce false RI predictions. Fourth,
the initialization processes have been developed and up-
graded to include a vortex initialization technique and a
data assimilation system that provide more realistic and
better-balanced initial conditions. The vortex initialization
technique (Liu et al. 2020) was developed to correct the ini-
tial location, size, and intensity of the TC vortex. It was fur-
ther improved by initializing a more realistic composite storm
vortex in 2017 and was adjusted to stay consistent with the
model’s resolution upgrades in 2010, 2015, and 2018. The
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FIG. 4. As in Fig. 3, but for the EPAC basin from 2009 to 2021.
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HWRF’s data assimilation system adopted the NCEP GFS’s
gridpoint statistical interpolation (GSI) assimilation tech-
nique for nested domains in the early years. With develop-
ment and upgrades over many years, it has evolved into a
more sophisticated stochastic physics-based hybrid GSI en-
semble Kalman filter (EnKF) system (Zhang et al. 2020),
which can run 40-member HWRF ensembles to provide
more accurate data assimilation covariance. The system can
assimilate observational data from a variety of platforms,
such as satellites, radars, and aircraft. There are still many
ongoing efforts, under potential research to operations, to
further improve the performance of the HWRF Model or
the next-generation hurricane model and provide more reli-
able guidance to operational TC forecasters (e.g., Lewis
et al. 2020; Ma et al. 2020; Wang et al. 2021, 2022).

d. Uncertainty and comparisons

The RI forecast evaluations can be affected by uncertain-
ties in intensity from the best track analysis (Landsea and
Franklin 2013; Torn and Snyder 2012) and the HWRF Model
forecast (Zhang et al. 2021b). For example, intensity in the
HWRF Model is derived from the instantaneous fields every
3 or 6 h using Geophysical Fluid Dynamics Laboratory
(GFDL)’s vortex tracker (Biswas et al. 2018; Marchok 2002);
this could result in an error of 8% due to large fluctuations
in the 10-m maximum wind speed with time (Zhang et al.
2021b). To estimate the impact of data uncertainties on the
RI forecast evaluation, 20 sets of normally distributed ran-
dom errors with a mean of zero and a standard deviation of
10% for the 10-m wind speed were added to the intensity
data from the model forecast and best track analysis. The
SPR and FPR indices were recalculated for each set of the
error-adjusted datasets. The resulting standard deviations
of SPR and FPR range from 0.02 to 0.07 (Fig. 5), which is
about 5%–10% of the mean SPR and FPR values.

Because HFIP adopted the MAE-based metric as a stan-
dard to measure programmatic progress in forecasting RI, we
apply the same method to calculate MAEs of the intensity

and 24-h IC during observed or forecasted RI events for each
cycle. Figure 6 shows decreasing trends for the MAEs for in-
tensity and 24-h IC at rates of 0.59 and 0.40 kt yr21, respec-
tively. However, the trends in forecast improvement from
MAE-based calculations are smaller than in SPR and FPR, as
shown in Figs. 3 and 4, which can be explained by two rea-
sons. First, SPR and FPR are based on category classification
where it is easier to detect improvements compared to MAEs
since the intensity forecast is not yet sufficiently accurate. Sec-
ond, the HFIP standard method combines data for missed, de-
tected, and falsely predicted RI events, which averages all
improvements, degradations, or both.

To examine the relationship between the probability-based
metric and MAE-based metric, a synthesized index (SI), de-
fined as POD5 1 (1 2 FAR5), is used to represent the proba-
bility-based metric, with an assumption that POD5 and FAR5
are equally considered in the RI forecast evaluation. A higher
SI suggests that RI events could be forecasted better during a
cycle, where a zero value indicates the worst forecast and a
value of two represents the best forecast. Due to large vari-
ability in the data, MAEs are averaged over SI intervals of
0.25. Figure 7 shows that the variations of the bin-averaged
MAEs in intensity (broken line) and 24-h IC (solid line) with
SI are similar. There is a trend that both the bin-averaged
MAEs decrease with SI, which can be fitted by a linear func-
tion (green line), MAE 5 28.34SI 1 30.5, with the coefficient
of determination (r2) of 0.49. The decreasing function sug-
gests that both metrics for RI forecast performance can give
similar bulk performance evaluations in that both a higher SI
and a lower MAE indicate better performance of RI forecasts.
However, it should be kept in mind that the decreasing rela-
tion of MAE and SI might not be valid for individual cycles or
when the sample size of RI cycles is small due to large variabil-
ity of data in each bin as shown in Fig. 7. Also, the correlation
between MAE and SI is weaker when SI , 1 (i.e., POD5 is
smaller than FAR5) than when SI $ 1. Therefore, a smaller
MAE might not represent a better detection of RI in terms of
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POD5 and FAR5 and vice versa when we interpret the evalua-
tion results based on different metrics for individual cycles in
practice, given that RI sample sizes even in a year are usually
small. It is worth further investigation on how to characterize
model performance in RI forecasts by synthesizing MAE-
based and probability-based metrics, given that both have ad-
vantages and disadvantages.

4. Summary and future work

An evaluation framework has been introduced to assess RI
forecast performance in individual 5-day forecast cycles rather
than individual lead times. This evaluation method is different
from the traditional RI evaluation in the following two re-
spects. First, RI evaluation is conducted in the context of indi-
vidual 5-day forecast cycles. This method can be used to
compare RI forecasts initialized at different times from a
model, and RI forecasts initialized at the same time from dif-
ferent configurations or different models. The cycle-based
analysis allows modelers and forecasters to investigate the un-
derlying causes of good or bad forecasts in the post-storm
analyses. In practice, examining the entirety of a 5-day fore-
cast can help forecasters to identify RI forecast challenges re-
lated to specific scenarios and to recognize scenarios where a
model is likely to perform well or poorly. The cycle-based
framework also can provide seasonal RI forecast statistical
performance in terms of the percentages of forecast cycles
with correctly or incorrectly forecasted RI events. The evalua-
tion of RI forecast performance is traditionally based on the
statistics for individual lead times rather than forecast cycles.
Therefore, the cycle-based framework provides an evaluation
from a different perspective. Second, the evaluation of indi-
vidual cycles incorporates AEIC and it is not solely based on
the POD and FAR indices for intensification rates that are

equal to or greater than RIc. The integration of AEIC into
the evaluation can partially address two misleading scenarios
when an evaluation is based only on the POD and FAR indi-
ces. One scenario occurs when the model forecasts a real RI
event with a very large error, but it is still classified as a suc-
cess. The other scenario is when the forecasted IC is very
close to the observation, but the forecast is still classified as a
failure if it is below RIc or as a false alarm if it is larger than
RIc. Like the traditional POD/FAR-based approach, the
cycle-based evaluation is dependent on the RI threshold,
time window for matching the observed and forecasted RI
events, and the uncertainty of data. In addition, the cycle-
based evaluation can vary with the choice of thresholds for
AEIC, POD5, and FAR5.

The new framework has been applied to analyze RI fore-
cast performance for an individual forecast cycle, the forecast
cycle spanning an entire storm, and all forecast cycles from
past hurricane seasons by the operational HWRF Model. It
has been shown that the overall HWRF Model performance
in predicting RI has improved over the years, particularly for
the NATL basin. The improvement trends are consistent with
those from the existing approaches such as the traditional
POD/FAR indices and HFIP standard MAE-based evalua-
tion. In addition, the cycle-based approach provides further
information on the percentages of successful and false predic-
tion cycles. While it was initially developed for the determinis-
tic HWRF Model, this cycle-based RI evaluation framework
also can be used to evaluate ensemble forecast systems. For a
given forecast cycle, the cycle-based analysis can assess how
many members of an ensemble system successfully or falsely
forecast RI events (Zhang et al. 2021a).

Although the AEIC has been integrated into the calcula-
tions of POD5 and FAR5 indices, the cycle-based evaluation
still has the limitations of the traditional POD/FAR method,
such as a lack of connection to the track forecasts and a de-
pendence on the cut-off value. In addition, there are two main
limitations compared to the current existing evaluation ap-
proaches for RI forecast performance. First, the analysis for
5-day forecast cycles requires at least 48 h of data during each
cycle, which reduces the sample size. The existing approaches
alleviate this limitation by sampling data at individual lead
times. Second, the cycle-based framework aggregates the suc-
cesses and failures across the 5-day forecast interval and thus
all timing information is lost for storm-total or season-total
statistics. Meanwhile, the existing approaches can preserve
timing information. Nevertheless, a cycle-based framework
can provide a convenient way to compare RI forecasts of dif-
ferent cycles or the same cycles of different models as well as
statistical information from a different perspective. In prac-
tice, multiple approaches can be used together for a compre-
hensive evaluation from varying perspectives.

The cycle-based framework can be further improved by us-
ing a combination of MAE-based and probability-based met-
rics to evaluate the success or failure of an RI cycle. To find
the relationship between the probability-based and MAE-
based metrics, we calculate the MAE of IC (and intensity)
during observed or forecasted RI events and a synthesized in-
dex based on POD5 and FAR5 for individual cycles. It is
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FIG. 7. The bin-averaged MAE in intensity (broken lines) and
24-h intensity change (solid lines) during observed or forecasted RI
events in individual 5-day cycles varying with the synthesized index,
POD5 1 1 2 FAR5, in the NATL (black lines) and EPAC (red
lines) basins, with a bin size of 0.25. Error bars denote standard
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found that both metrics can give similar bulk evaluation re-
sults. Nevertheless, the two metrics might not give consistent
evaluations for individual cycles or a small sample size due to
the large variability of MAEs at a given SI. This should be
kept in mind when interpreting in practice the evaluation re-
sults with the two different metrics, given that RI sample sizes
even in a year are usually small. Therefore, it is challenging to
synthesize probability-based and MAE-based metrics to re-
flect both forecast errors in intensity and the probabilities of
RI detections and false alarms. For example, POD and FAR
can be integrated into the calculation of MAE in intensity by
using different weights for missed, detected, or falsely pre-
dicted RI events. Another improvement in the cycle-based
framework is to quantify the usefulness of RI forecasts. To
characterize the degree to which RI forecasts are useful, SPR
and FPR can be combined in different ways, depending on
the importance model developers and forecasters put on the
detection or false alarms of RI events.
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